
CFD CTA Technology Improvement Projects
In

Grid Generation

Bharat K. Soni
Hugh Thornburg
Surya Dinavahi

David Thompson
Roy Koomullil

NSF Engineering Research Center
Mississippi State University
Mississippi State, MS 39762

ABSTRACT

The progress realized in CFD CTA technology improvement projects associated with grid
generation is described in this paper. GGLiB (a geometry and grid library), algorithms to
facilitate grid automation, and development of grid adaptation schemes with an associated
feature detection module are emphasized. The software system, PMAG (Parallel
Multiblock Adaptive Grid system) is also described in detail. Computational examples are
presented to demonstrate the successes of these methodologies.

INTRODUCTION

With the advent and development of high performance computers, pertinent software and
numerical algorithms, Computational Field Simulation (CFS) is rapidly emerging as an
essential analysis tool for science and engineering problems. The availability of
previously unimaginable computational power and improved numerical algorithms has
fundamentally changed the way underlying principles of science and engineering are
applied to research, design and development in current engineering practice. For example,
Computational Fluid Dynamics (CFD) techniques, traditionally used on fluid mechanics
problems involving aerodynamics, hydrodynamics, and heat and mass transfer, are now
being explored for electromagnetic, bio-engineering, and other physical field problems.
The reduction in design time in both the automotive and aircraft industry is evidence of
the importance of computational simulation to industry. Lockheed Martin, for example, is
now integrating computational simulation and modeling tools to create a virtual design
and manufacturing environment for the Joint Strike Fighter and the F-22 fighter plane.
Integration of computational simulation results with test data for improved analysis and
ultimate design related data quality is of key importance to future technology.

The PET component of the MSRC is designed to improve the state-of-the-practice in
analysis, simulation, test, and design utilizing high performance computing resources. The
mission of the CFD CTA PET program at the MSRC is to improve the capability to
efficiently perform CFD simulations of importance to DOD in a HPC environment. At the
same time, a significant improvement in DOD expertise in HPC, with extensive awareness
of CFD in the HPC environment, should be achieved improving DOD collaborations by
significantly reducing technology transfer time from research and development
communities to CFD practitioners (the REAL users). The overall CFD CTA mission at
ARL and ASC is to play a key role in accomplishing the stated goals working side-by-side
with CTA teams at all MSRCs.

BACKGROUND

The construction of a grid on which to represent and solve the discrete approximates to the
field equations is an essential element of the computational simulations for problems of
interest in engineering. The grid (mesh) generated must be boundary-conforming for the
complete region of interest, and must exhibit point densities appropriate for the resolution
of relevant physics on widely disparate length scales. The grid employed can have a
profound influence on the accuracy and economy of the overall simulation. In general, the
discretization of the governing equations usually depends on the grid and solution strategy
(finite difference, finite volume, finite element, spectral, etc.) under consideration. The
grid can be classified as cartesian, multiblock structured with attached or overlapping
zones, multiblock structured with arbitrarily overlaid (chimera) blocks, unstructured,
hybrid/generalized or gridless.

A pictorial vision chart representative of the distinct issues -- past, present and future
states, as well as ultimate goals -- is shown in Figure 1. The main concern, however, is
response time. In general, only for moderately complex configurations can the geometry
be prepared and the grid be generated in a timely enough manner to fulfill industrial
needs. The ultimate industrial goal is to perform the grid generation for complex design
applications in one hour and the entire simulation involving complicated physics in one
day. The response time chart (Figure 1) represents the average time required to perform
grid generation and associated sensitivity analysis (grid generation with minor design
perturbations) and industrial expectations. In general, 80 - 90% of the grid generation
labor time is usually spent on the geometry preparation and surface grid generation.

In most applications these surfaces, representative of solid components, are defined in the
CAD/CAM systems as a composite of explicit or implicit analytical entities, semi-analytic
parametric splines, and/or a sculptured discrete set of points. The standard common
interface for geometry exchange is IGES (International Graphics Exchange Standard)
which is based on curve and surface definitions of the geometric entities. These entities
are not suitable for the treatment of trimmed surfaces which appear frequently in CAD
representations. Also, there are no standards for the tolerances and numerical
approximations required for various numerical. As a result, there exists a multimillion-
dollar industry developing software just to exchange IGES data from one CAD system to

VISION

Figure 1 Vision: Past, Present, and Future

another. Also, due to different tolerance requirements, the resulting geometric
description may include gaps, overlaps, and bad elements. Better methodologies are
needed to repair CAD geometries and more efficient geometry and grid interfaces are
needed. The CAD industry, however, is beginning to use solid modeling based geometric
entities. Consequently, a new international standard, STEP (Standard for the Exchange of
Product Data), is under development. The STEP is not only a geometric exchange
standard. It can also be used throughout the product life cycle, including design, analysis,
manufacturing, support and maintenance. The ultimate goal should be to develop grid
technology based on solid models with a robust and efficient interface to STEP.

Complex simulation problems typically involve multiple scales in both the temporal and
spatial domains. These simulations are performed using sophisticated spatial and temporal
discretization techniques that involve finite element, finite difference or finite volume
methods. It is well known that adaptive meshes should be used to obtain accurate solutions
with a reasonable number of degrees of freedom. Thus, in view of affordability and
accuracy requirements, it is very important to develop quality grids based on field
characteristics (adaptive grids) and/or based on the movement of geometrical components
in the field (moving grids). There is also an increasing demand for dynamic
(adaptive/moving) grids. The dynamic grid algorithms, at present, are limited to simple
configurations. Techniques are needed to enhance the applicability of adaptive schemes
for complex configurations. This task requires computer representation of the geometrical
configuration and intimate coupling with the grid generation software. It continues to be
the pacing item in the application of computational simulation to engineering analysis and

industrial design -- requiring too much labor to produce the geometry/grid for new or
modified configurations, and thus significantly delaying and lengthening the design
process.

Due to reasons listed above, effort is concentrated on technology improvement projects in
the area of geometry and grid generation. The progress realized in the development of
CAD to grid interface treatment, algorithms for automating the grid generation, and
adaptive grid generation is presented in this paper.

Discussions of GGLiB (a geometry and grid library), efforts to automate grid generation,
research in the area of grid adaptation, and the development of the parallel multiblock
adaptive grid system (PMAG) follow.

GGLiB

The surface definition of solid geometrical for the geometry under plays a very crucial
role in the efficiency and accuracy of the overall grid generation. Various software tools,
libraries, and new methodologies to treat geometrical entities and associated
transformations required for analysis have been developed. In particular, the public
domain libraries, DT_NURBS developed by Boeing under sponsorship of the Navy, the
public domain software CAGI developed at MSU under the sponsorship of NASA, the
commercial systems GRIDGEN, ICEM, CFD-GEOM, and others are based on the
NURBS as the geometry engine. The development of GGLiB, a geometry and grid
generation software library is designed to improve the state-of-the-practice by acquiring
and enhancing or developing appropriate methodologies/modules.

There are two distinct approaches to integrate geometry and grid generation currently
utilized. In the first approach, a loosely coupled module is developed by efficiently
utilizing the geometry modeling and manipulation capability of the CAD system. This is
accomplished via user function APIs to directly access the geometry engine of the CAD
system. This approach has been successfully applied by Haimes[] in the development of
the system, “Capri.” The second approach calls for the development of a stand-alone
system to manipulate/generate/enhance geometry information from the IGES file. To this
end, the development of the GGLiB[] is undertaken. GGLiB offers a transparent API
access to widely utilized geometry and grid functionsto application software written in
FORTRAN, C, C++, and JAVA. A pictorial diagram depicting GGLiB is displayed in
Figure 2.

GGLiB assumes that geometrical entities are described by NURBS. Functions to tranform
commonly used entities into NURBS, evaluations, transformations, and projections along
with an IGES reader (which reads IGES file and converts all entities into NURBS) are
accessible in this library. All functions available in the CAGI[31] system are included in
GGLiB. Detailed discussions and information can be found at

.

Figure 2 Structure of GGLiB

http://www.erc.msstate.edu/~bsoni/GGLiB. We expect to release GGLiB version 1.0 to
DOD community at large in September’99

GRID GENERATION AUTOMATION

Two of the most commonly used approaches for grid generation are structured multiblock
and unstructured grids. Each of them has it’s own advantages and disadvantages.
Structured grid based flow solvers are more efficient and can handle very high aspect ratio
cells. But, the man-hours to generate a good quality grid are much higher compared to
unstructured grids. There are accuracy issues that have to be addressed for the Navier-
Stokes calculations on highly stretched unstructured grids. Recently, hybrid or
generalized element grid generation strategy has been developed to combine the attractive
features of structured and unstructured grids

Hybrid Grid Generation

The hybrid grids developed as part of this effort consist of a structured grid in part of the
physical domain and an unstructured grid in the rest of the field. In general, a hybrid grid
can be defined as an agglomeration of cells with different number of sides. This
necessitates the hybrid grid generation process to be a combination of structured and
unstructured grid methodologies. Good quality structured grids in the boundary layer are
generated by an advancing layer type of marching together with a local elliptic solver.
The overlapped structured grid from different solid bodies in the domain is trimmed by

comparing the aspect ratios of the cells. The rest of the domain is filled with unstructured
grids.

Generation of Structured Grid

An advancing front scheme is utilized to generate the structured grid near no-slip
boundaries (Huang [1]). Marching fronts are started from the different entities in the field.
Each sculptured body surface is defined such that significant features of the body are
preserved. The normal to the body at each discrete point is calculated algebraically by
averaging the normals of the line segments sharing the point. The location of the point in
the next layer is evaluated by utilizing a user-specified distance along the normal. Once
the second layer of points is determined for all boundary points, the second layer is taken
as the new marching front. A third layer is generated from the previously generated grid
line using the procedure outlined above. An elliptic solver is applied to these three grid
lines to smooth grid lines and avoid grid crossing. This step is important for geometries
having concave and convex surfaces. The smoothing helps ensure a smooth turning of the
surface normals for concave surfaces. After the application of the elliptic solver, the
second grid line is taken as the new front and the process is repeated until the required
number of structured grid layers in the boundary layer is reached. Since this is a marching
scheme and the application of the elliptic solver is local, it makes the overall process fast
and robust.

Trimming of Structured Grid

The structured grids in the vicinity of the solid bodies in the domain are generated
independently. These structured grids are trimmed based on the aspect ratio of the cells
and the overlapping of the component grids (Huang [1]). All cells that have an aspect
ratio less than unity are removed. After clearing the cells with aspect ratio less than one
and the overlapping cells, the points which are located near the cleared gap region are
connected to form a closed loop. The closed outer boundary loops for the component
grids together with the global outer boundary information are supplied as boundaries for
the unstructured grid generation.

Sometimes two component grids may be close enough so that there is not enough space
for growing the high aspect ratio cells to unity before the trimming. In this case, the
boundary points are refined to get a smooth transition of the structured grid to
unstructured grid.

Generation of Unstructured Part

After trimming, part of the physical domain is filled with non-overlapping structured grids
and the rest of the domain is left empty. This empty region is then filled with triangular
cells. The unstructured grid is generated using Delaunay triangulation (Weatherill [2]).
For Delaunay triangulation the boundaries are formed by the outer boundaries of trimmed
structured grids and the outer boundary of the physical domain.

As the final step of the hybrid grid generation, the trimmed structured grid and the
unstructured grid are connected to form a single grid. The connectivity table is also
updated with the new node numbers.

An example of hybrid grid generated using this approach is shown in Figures 3 and 4.
Figure 3 shows a close-up view of the trimmed structured grid near the leading edge of an

Figure 3 Trimmed Structured Grid Near the Figure 4 Hybrid Grid Around an Iced Airfoil
 Leading Edge

Figure 5 Examples of Hybrid Grids

iced airfoil and the resulting hybrid grid is shown in Figure 4. Two other examples of
hybrid grids are shown in Figure 5.

Quad-Dominant Grid Generation

As an alternative to the structured grid method described in the previous section, a quad-
dominant, semistructured grid algorithm was developed. The grids generated using the

quad-dominant method can be classified as hybrid grids since they combine elements of
both structured and unstructured topologies. They can best be described as semistructured.
The marching scheme employed here is similar to the one described in a previous section.
However, a node deletion/insertion algorithm is used after the grid is defined for a layer
and before the initial surface for the next layer is defined. Using the criteria defined by the
algorithm, a point deletion/insertion stencil is created that maintains the structured nature
of the grid within layers. This approach creates points that exist in one layer but do not
exist in an adjacent layer in so far as the grid generation algorithm is concerned.
Traditionally, these grid points have been called hanging nodes. Details regarding the
algorithm are given in Reference 6. A simple example illustrating the topology of the grid
follows.

Example - Node Deletion at Layer Interface

The node deletion process is illustrated for a two-dimensional grid in Figure 6. The points
1, 2, and 3 form the initial data surface for layer k. Points 4, 5, and 6 are generated using
the parabolic marching algorithm. Note that points 4, 5, and 6 are not collinear. Based on
the deletion/insertion algorithm, it is determined that point 5 should not be used to
generate the grid in the next layer k+1. Therefore, the initial data surface for layer k+1
contains the points 4 and 6 but not point 5. The marching algorithm is then used to
generate the surface containing points 7 and 8. Note, however, that the cell in layer k+1 is
actually defined using points 4, 5, 6, 8, and 7 resulting in a five-sided cell even though
point 5 was not used to compute points 7 and 8. The extension to three dimensions occurs
through the deletion of the line passing through point 5 rather than point 5 alone. As an
example of this type of grid topology, Figures 7.a and 7.b show a typical grid for an airfoil
with ice accretion.

Figure 6 Semistructured Grid Topology

Figure 7.a Overall View of Grid Figure 7.b Detail in Node Region of
Airfoil with Ice Accretion

ADAPTATION

Approach to Adaptation

For structured grid topologies, redistribution of a fixed number of grid points, commonly
referred to as r-refinement, is by far the simplest to implement and most widely utilized
grid adaptation strategy[13]. For unstructured/hybrid or generalized grid topologies where
the connectivity is specified explicitly, strategies based on h-refinement, derefinement, and
point movement[30] are more attractive and are widely used. Here, redistribution
schemes for structured grids with multiple, topologically distinct blocks are explored.
Also considered is a point movement approach for generalized grid topologies.

Adaptive redistribution of points traces its roots to the principle of equidistribution of error
[37] by which a point distribution is set so as to make the product of the spacing and a
positive weight function constant over the set of points:

With the point distribution defined by a function iξ , where ξ varies by a unit increment
between points, the equidistribution principle can be expressed as

.constwx =ξ

This one-dimensional equation can be applied in each direction in an alternating fashion
[9, 13, 14]. Direct extension to multiple dimensions using algebraic[9], variational [36,
37], and elliptic [13, 14, 17] systems is well documented in the literature. The definition
and evaluation of the weight function is the key to a successful adaptation.

.constxw =∆

Structured grid generation methods using algebraic methods (where interpolation schemes
or CAGD (Computer Aided Geometry Design) techniques are utilized) and methods using
partial differential equations (where elliptic, parabolic, or hyperbolic equations are solved)
can be utilized for adaptive redistribution of grid points. In general, the adaptive
redistribution process consists of three main steps. The first step is to define appropriate
weight functions representative of important solution features. The second, and probably
the most crucial step, is to redistribute the grid points in the computational domain in a
manner consistent with the aforestated weight function. It is crucial that the geometric
fidelity of solid boundaries must be maintained during the redistribution process. Also,
grid quality, as measured by orthogonality, cell aspect ratio, and smoothness, must be
maintained. The third and the final step is to modify the metric terms to reflect grid
movement with a consistent grid speed or to re-evaluate the flow variables and metric
terms at the new grid locations using an appropriate search/interpolation scheme. Time
accuracy is achieved by transforming the time derivatives through the addition of
convective-like terms containing the grid speeds in a manner that does not alter the
conservation properties of the governing PDEs.

The parametric, control points-based, Non-Uniform Rational B-Spline (NURBS) [9, 31] is
utilized for algebraic grid adaptation and for redistribution of grid points on solid
boundaries associated with the geometrical configuration under study. The convex hull,
local support, shape preserving forms, and variation diminishing properties of NURBS are
extremely attractive in engineering design applications and in geometry/grid generation.
In fact, the NURBS representation has become the "defacto" standard for the geometry
description in most modern grid generation systems[28, 31].

Curve/surface/volume grid point redistribution can be accomplished by evaluating the
underlying NURBS representation at the specified parametric locations. The usual practice
is to transform all pertinent geometrical entities into NURBS representations resulting in a
common data structure. However, in many instances, only the grid information is available
and the boundaries/surfaces of interest are represented by a discrete set of points. The
inverse NURBS formulation can be used to uniquely transform discretized sets or
networks of points into appropriate NURBS descriptions.

Weight Functions

Typically, weight functions for solution adaptive grid generation are constructed to mimic
the local truncation error and may require substantial user input. These weight functions
can then be used to construct blending functions for algebraic redistribution, interpolation
functions for unstructured grid generation, forcing functions to attract/repel points in an
elliptic system, or to trigger local refinement. Several papers, such as those by Thompson
[13], Anderson [14], Soni and Yang [15] and Soni, et al.[16], present applications where
significant improvements in accuracy have been obtained through the use of adaptive grid
procedures. Most of these techniques are based on weight functions comprised of
combinations of flow variable derivatives, and require input for the selection of these
variables, as well as their coefficients. Dwyer[17] and Soni and Yang[15] have developed

scaling procedures to lessen the required user input for construction of these weight
functions. It is believed that an adaptive grid system which requires no user input while
ensuring an efficient grid point distribution would dramatically increase the routine use of
CFD in the design and analysis environment. The development of such a system is the
ultimate objective of this work. The weight functions developed here utilize extensive
scaling and normalization, and hence, may not be the most efficient for a given problem,
but are intended to remain useful for a wide range of problems with no user input. The
weight function developed here utilizes scaled derivatives and normalizing procedures to
minimize or eliminate the need for user input. In this work, solution adaptive
redistribution of grid points is achieved via equidistribution of the weight function through
the use of forcing functions in elliptic systems, parabolic systems, and algebraic systems.

Construction of Weight Functions

Application of the equidistribution law results in grid spacing inversely proportional to the
weight function, and hence, the weight function determines the grid point distribution.
Ideally, the weight function would be equal to the local truncation error ensuring a
uniform distribution of error. Determination of this function is one of the most
challenging areas of adaptive grid generation. The overall solution is only as accurate as
the least accurate region. Excessive resolution in a given region does not necessarily
increase the accuracy of the overall solution. Evaluation of higher-order derivatives from
discrete data is progressively less accurate and is subject to noise. However, lower-order
derivatives must be non-zero in regions where the variation of higher-order derivatives is
significant, and are proportional to the rate of variation. Therefore, it is possible to
employ lower-order derivatives as proxies for the truncation error. Construction of
weight functions often requires the user to specify which derivatives are to be used as well
as their relative proportions. This can be a time consuming process. Also, due to the
disparate strength of flow features, important features can be lost in the noise of dominant
features.

Weight functions based on this paradigm have been developed by Soni and Yang[15] and
Thornburg and Soni[18]. The weight function of Thornburg and Soni[18] has the
attractive feature of requiring no user specified inputs. Relative derivatives are used to
detect features of varying intensity, so that weaker but important structures, such as
vortices, are accurately reflected in the weight function. In addition, each conservative
flow variable is scaled independently. One-sided differences are used at boundaries. No-
slip boundaries require special treatment since the velocity is zero and are handled in the
same manner as zero velocity regions in the field. A small positive quantity, , is added to
all normalizing quantities. In the present work, the weight function uses the Boolean sum
construction method of Soni and Yang[15]. Additionally, the normalizing derivatives have
been set to an initial or minimum value of ten percent of the freestream quantities. This
alleviates problems encountered in flows without significant features to trigger adaption in
one or more coordinate directions. Otherwise a few percent variation would be
normalized to the same level as a shock or other strong feature.

Analysis of the weight functions explored to date indicates that density or velocity
derivatives alone are not adequate to represent the different types and strengths of flow
features. Density, or pressure for that manner, varies insufficiently in the boundary layer
to be used to construct weight functions for representation of these features. While
velocity derivatives by themselves are adequate for resolving boundary layers in viscous
flows, additional variables must be included to represent other flow features such as
shocks or expansions.

The current weight function is as follows:

),,max(),,max(),,max(
1

321

3

321

2

321

1

WWW

W

WWW

W

WWW

W
W ⊕⊕+=

where, k=1,2,3, and

+

+
⊕

+

+
= ∑

=⊕

max

1

max
ε

ε

ε

ε

ξξ

ξξ

ξ

ξ

i

i

i

i

nq

i

i

i

i

i

k

q

q

q

q

q

q

q

q

W
kk

kk

k

k

Usually ρ, ρu, ρv, and ρw are utilized for i=1, 2, 3, and 4 respectively. However, the user
may select variables for adaptation based on the particular application being considered.

The symbol ⊕ represents the Boolean sum. Which, for two variables q1 and q2, is defined
as

212121 qqqqqq −+=⊕

Note that the Boolean sum is defined only when 10 ≤≤ iq , which brings in both logical
or/and effects in the evaluation of weights. Normalization and scaling applied in the
computation of weight functions ensure the satisfaction of this criteria. Note that the
directional weight functions are scaled using a common maximum in order to maintain the
relative strength.

Intuition and experience of the user can be used to determine the location of relatively
"weak" features such as shear layers. Feature detection could be improved if this
"knowledge" could be incorporated into the weight function. It is critical for the adaptive
procedure to recognize all flow features and not be dominated by a single feature such as a
strong shock. Additionally, only structures that have been at least partially resolved by the
flow solver can be detected by the weight function. Any feature completely missed in the
simulation will not be detected. Hence the quality of the weight function is dependent
upon the quality of the solution. The adaption procedure and the flow solver should be

coupled so that the adapted grid can reflect all the features that are detected as the solution
progresses and improves due to adaptation. If the weight functions are to be used directly,
such as in the algebraic redistribution technique, smoothing is required. However, when
performing approximate equidistribution via forcing functions, it seems to be more
effective to smooth the forcing functions directly.

Grid Point Redistribution Methods: Structured Grids

Algebraic Methods

An algebraic interpolation scheme based on transfinite interpolation is widely utilized for
grid generation[28, 29]. Transfinite interpolation is accomplished by the appropriate
combination of 1D projectors F for the type of interpolation specified. For a three-
dimensional interpolation from all six sides (surfaces) of a section, the combination of
projectors is the Boolean sum of the three projectors:

3211332213121321 FFFFFFFFFFFFFFF +−−−++=⊕⊕

For adaptive grid redistribution, a NURBS representation is used as the projector F in each
of the directions associated with the transfinite interpolation. Alternatively, a NURBS
surface/volume description can be directly evaluated. The NURBS volume is defined by
extending the surface definition in a tensor product form and is presented in eqn (7).

Elliptic Methods

The elliptic generation system:

∑∑ ∑
= = =

=+
3

1

3

1

3

1

0
i j k

k
kkij

kji rPgrg ξξξ

where r : Position vector,
gij : Contravariant metric tensor

iξ : Curvilinear coordinate, and
Pk : Control function.

is widely used for grid generation [3]. Control of the distribution and characteristics of a
grid system can be achieved by varying the values of the control functions Pk in eqn. (7)
[3]. The application of the one-dimensional form of eqn. (7) combined with
equidistribution of the weight function results in the definition of a set of control functions
for three dimensions given by:

()
i

i
i W

W
P

iξ= i=1,2,3

These control functions were generalized by Eiseman [2] as:

()
∑

=

=
3

1j i

i

ii

ij

i W

W

g

g
P

iξ i=1,2,3

In order to conserve some of the geometrical characteristics of the original grid, the
definition of the control functions is extended as:

wtieometryiai PcPP += lgint i=1,2,3

where Pinitial geometry : Control function based on initial geometry
Pwt : Control function based on current solution

iξ : Constant weight factor.
These control functions are evaluated based on the current grid at the adaption step. This
can be formulated as:

())1()1()(−− += n
wti

n
i

n
i PcPP

A flow solution is first obtained with an initial grid. Then the control functions Pi are
evaluated in accordance with eqns. (17) and (20), which are based on a combination of the
geometry of the current grid and the weight functions associated with the current flow
solution[13].

Evaluation of the forcing functions corresponding to the current grid geometry has proven
to be troublesome. Direct solution of eqn. (7) for the forcing functions using the input
grid coordinates via Cramer's rule or IMSL libraries was not successful. For some grids
with very high aspect ratio cells and/or very rapid changes in cell size, the forcing
functions became very large. The use of any differencing scheme other than the one used
to evaluate the metrics, such as the hybrid upwind scheme[8], would result in very large
mesh point movements. An alternative technique for evaluating the forcing functions
based on derivatives of the metrics was implemented[3].

() () ()
33

33

22

22

11

11

2
1

2
1

2
1

g

g

g

g

g

g
P

iiiiii

i
ξξξξξξ ++= i=1,2,3

This technique has proven to be somewhat more robust, but research efforts are continuing
in this area.

Parabolic Methods

The effectiveness of utilizing systems of partial differential equations to generate solution
adaptive node distributions for discrete solutions of field equations is well documented. In
addition to the elliptic techniques described in the previous section, hyperbolic systems
(Niederdrenk[19], Niederdrenk[20]) have also been used to generate adaptive grids for a
variety of configurations.

The two main advantages provided by elliptic systems are 1) the smoothness of the
resulting mesh and 2) the ability to control grid point locations. The primary disadvantage
is the execution time required to solve the resulting elliptic system. The main advantage of
the hyperbolic system is the execution time needed to generate the grid. Hyperbolic

systems can be solved in much less time than elliptic systems - typically one to two orders
of magnitude less. However, purely hyperbolic systems do not guarantee the same degree
of smoothness because of a lack of dissipation. This shortcoming is remedied through the
addition of dissipative terms (Chan[22])

Parabolic systems provide a compromise between these two approaches since grids
generated using parabolic methods can be obtained in times competitive with those
generated using hyperbolic schemes. In addition, the presence of dissipation helps to
ensure a smooth grid point distribution. The approach used here is based on the initial
work of Nakamura[21] for static grids, later extended by Noack and Anderson [23] and
Noack and Parpia[24] to solution adaptive grids.

The method employed here is essentially the same method used for the semistructured grid
generation only without node deletion/insertion. It should be noted that the node
deletion/insertion strategy could be based on flow variables as well so the potential exists
for a grid adaptation algorithm based on refinement and redistribution. Although only two-
dimensional domains are considered here, extension to three dimensions is straight
forward and has previously been demonstrated (Noack and Parpia [24]) for a structured
grids.

Figure 8 shows an inviscid, supersonic channel flow with a parabolically generated,
solution adaptive grid. The grid clearly adapted to the shock at the corner, the reflected
shock and some clustering is evident in the expansion.

Figure 8. Parabolically Generated, Solution Adapted Grid

GRID POINT MOVEMENT: UNSTRUCTURED GRIDS

One of the many techniques for grid adaptation by node movement is using a weighted
Laplacian approach (Thompson et al.[25]). This approach is simple to implement and can
be used for any grid topology. The weights are calculated using the same approach as
used for structured grids. The gradient at the cell center, used in evaluating the weight
function, is calculated by applying Gauss' theorem:

∫ ∑Ω∂
==∇

faces

dAnf
V

dAnf
V

f
11

where, V is the cell volume, n is the positive outward unit normal to the control surface,
and dA is the control surface area. The gradients and the corresponding weight functions
are calculated in physical coordinates. A typical form of the weighted Laplacian [25] is
written as:

∑
∑ −

+=+

edges
i

edges

nn
ii

nn

W

rrW

rr
0

00
1

)(

ω

where, r is the position vector, superscript n+1 and n are indicate relaxation levels, Wi0 is
the weight function for the edge connecting nodes i and 0, and ω is the relaxation
parameter.
An example of the grid adaptation using the weighted Laplacian approach is shown in
Figure 8. An unstructured grid for a geometry representative of a scramjet engine is
considered for this example. The inlet Mach number is taken as 3 and the resultant
pressure distribution together with initial grid is shown in Figure 8(a). The weight
function is based on the four conserved variables and is plotted in Figure 8(b). The
adapted grid and the solution on the adapted grid are shown in Figure 8(c) and (d). It can
be seen from the pictures that the shocks and expansion fans are captured more distinctly
in comparison to the original unadapted grid.

(a) Initial Grid and Pressure Distribution

(b) Weight Function

(c) Adapted Grid

(d) Pressure Distribution on Adapted Grid
Figure 8 Grid Adapatation on Unstructured Grid Using Weighted Laplacian Approach

Surface Point Redistribution

Accurate representation of the flow field in the vicinity of boundaries is critical for an
acceptable overall solution. Physical processes occurring near the boundaries often drive
the flow physics in other regions of the domain. This is especially true for no-slip
surfaces. Hence, the quality and distribution of the grid in no-slip regions is of critical
importance. Mesh orthogonality may also required for the implementation of a turbulence
model. When using an adaptive procedure based on a redistribution strategy, the interior
points move as the grid is adapted. This leads to distorted cells if the boundary points are
not redistributed in a consistent manner as the grid is adapted. Both grid quality and
geometric fidelity must be maintained during the redistribution process. In this approach,
all surfaces of individual blocks are treated in the same manner - whether they are block
interfaces or physical boundaries. The NURBS description of the underlying geometry
associated with the interface has already been presented. This description is used to

generate the redistributed surface using a user specified distribution mesh. The entire
surface or a subregion can be redistributed. Subregions can be used to fix points, such as
sharp corners or a transition point between boundary condition type. For solid surfaces,
the distribution mesh is based on the nearest interior surfaces. The spacing between
surfaces is small and the surfaces are of a similar geometric shape resulting in a nearly
orthogonal coordinate system. Block interfaces are treated by redistributing the current
block surface based on its corresponding surface in the neighboring block.

Feature Detection

Although the feature detection module described below is designed to be used as a stand-
alone software package, the detection technique may also be incorporated into the weight
functions used for grid adaptation.

Locating vortices in complex, three-dimensional flow fields can be a challenge. A
technique has been developed to automatically locate swirling regions of flow based on
the eigenvalues of the velocity gradient tensor[56]. The method is based on a single
parameter (termed the swirl parameter) which is defined in regions of complex
eigenvalues. For the special case of a spatially and temporally constant velocity gradient
tensor (which yields a periodic fluid motion), the magnitude of the complex portion of the
eigenvalues can be related to the period of the swirling motion. The swirl parameter is
defined to be the ratio of the period implied by the complex portion of the eigenvalues to
the time it takes a fluid particle to convect through the region of complex eignvalues. In
regions where the swirl parameter is small, the fluid particle convects out of the complex
eigenvalue field "too fast" to participate in swirling motion. Where the swirl parameter is
large, the fluid swirls before it can be convected out of the region of complex eignevalues.
The convection velocity is the velocity in the plane perpendicular to the real eigenvector.
For the more realistic case of a spatially and temporally varying velocity gradient tensor,
the swirl parameter is interpreted as the tendency for the fluid to swirl around a point.

A software package has been developed that reads grid and q files in Plot3d format and
computes the swirl parameter at each point in the field. The data is output in the format of
a Plot3d function file. A user-friendly interface has been developed to simplify the process
for multiple data files. The interactive version of the program is written in FORTRAN90
and C++ and requires the QT library (http://www.troll.no). Additionally, a batch version of
the program has been developed. A pictorial view of the user interface is shown in Figure
9. Two examples of flow visualization using the swirl parameter are shown in Figures 10
and 11. The software is available for DOD users. Additional details can be obtained at
http://www.erc.msstate.edu/~dst/research/swirling_flow/swirling_flow.html or via email at
dst@erc.msstate.edu.

Figure 9. Swirl User Interface

Figure 10. Swirl Parameter for Multi-Element Airfoil

Figure 11. Isolevel Plot of Swirl Parameter for ONERA M6 Wing

PMAG: PARALLEL MULTIBLOCK ADAPTIVE GRID SYSTEM

A parallel grid adaptation system for general three-dimensional structured multiblock
domains (PMAG) [34] is described in this section. The grid adaptation scheme is based on
the redistribution of grid points using an elliptic solver with weight functions as described
previously. The grid blocks are treated as individual domains that may be distributed over
multiple processors. MPI [32, 33] is used for message passing. On shared memory
machines, each block can be split over multiple threads. The weight function used has
been previously described in section 3. A Neumann surface boundary condition has been
implemented using NURBS representations for the geometrical entities described as
previously to maintain geometric fidelity. A parallel multiblock solution interpolation
algorithm has been incorporated to guarantee accurate adaptation. The system can also be
used as a multiblock elliptic grid generator. The PMAG system was developed with the
following goals in mind:

1. There should be absolutely no restriction on block connectivity. A block can be be
connected to any block including itself, thus supporting a wide range of complex three-
dimensional topologies.

2. The algorithm should adapt a multiblock grid concurrently with each block solved in
an individual process. These processes could be run on a shared memory parallel machine
or distributed over a network of workstations. The algorithm should be scalable.
Communication latency should be minimized.

3. Grid adaption should require minimum user interaction to resolve all important flow
features. The Neumann boundary conditions should be incorporated to maintain grid
quality near body surfaces. Solution interpolation must be included.

Parallel Implementation

The distribution of grid points in each block is to be resolved as an independent process.
PMAG spawns processes equal to the number of blocks in the topology. Each block is
stored in a separate disk file. This is done to enable concurrent reading and writing of grid
files by each process. The user needs to supply the connectivity information for each
block. This includes information about shared faces and fixed patches. Grid lines must be
continuous across adjoining blocks. The inter-block faces, edges, and vertices that do not
describe a fixed body must be free to float in the space. This requires that the point
distribution on the block faces be computed with an exchange of information across the
faces. Each block has a layer of ghost cells that contain data from the neighboring blocks.
This data is updated at intermediate intervals using asynchronous communication.
Individual processors are responsible for computing the control functions and executing
the elliptic solver. A global norm is computed after each iteration for comparison with a
specified convergence criterion. Solution interpolation and boundary point movement
using a NURBS surface definition is performed after every n iterations as specified by the
user.

This algorithm achieves scalability through the use of threads. If excess processors are
available, the processes subdivide their domains by unrolling the outermost loop of the
solver and the search algorithm and spawning a thread for each subdomain. Controlling
the number of threads spawned by each process aids in load balancing. The larger blocks
are allowed to spawn more threads than the smaller blocks. Splitting the domain into
subdomains also leads to better cache performance. Threads are used with MPI although
the MPICH implementation is not thread safe. Therefore, only one thread is active at the
time of inter-process communication. The rest of the threads stop during this time. A
further enhancement to the current version would have other threads continuing the
computations with locks on the data while one thread is dedicated to communications.

Handling Shared Faces

To guarantee complete continuity of grid lines across block faces, each block sends a face
to its neighboring block. The elliptic generator can then run using the face from the
neighboring block as a Dirichlet boundary. After every iteration, the updated faces are
transmitted to the neighboring block. This way, the locations of the face points are
computed using the elliptic equations at every step. However, the solution for the face
points in each block occurs separately. Hence it is possible that the face points may not
coincide after an iteration. To eliminate this discontinuity, some sequential multiblock

codes keep track of the faces, edges, and vertices belonging to each block. Connectivity
tables are maintained to identify shared vertices, edges, and faces. At the end of each
iteration, these connectivity tables are used to select the copies of the common face, edge,
or vertex and then an averaged value (or a value computed using the elliptically solver) is
broadcast to all the owners.

Another method especially amenable for C language codes uses pointers to faces, so that
only a single copy of a shared face is maintained, with both blocks pointing to the same
memory location. Clearly, the later strategy cannot be used when the blocks have been
assigned to different processors. The first strategy of collecting all copies and then
broadcasting an average can work in a parallel implementation but only with a
communication penalty. In the case of a simple structured topology with eight vertices,
twelve edges, and six faces per block, each face can be shared by only one other block.
One edge is shared by four blocks and a vertex is shared by eight blocks. In such a case, to
retrieve unique face, edge, and vertex locations, each block needs to communicate with 26
neighboring blocks. Since an elliptic system has a three-point stencil, and since both
blocks have identical copies of all three faces required for computation of the block
boundary face, the face points calculated for the each block using the elliptic system
should be the same. Hence, the face points are solved individually using point Jacobi
iteration (to guarantee a three point stencil).

The point distribution in the interior of the block is computed using the standard
tridiagonal system. The control functions for the points on the shared faces are also
evaluated using only a three-point stencil guaranteeing that neighboring blocks compute
identical locations for the shared points. The simplicity of this scheme is its major
advantage. No complicated global connectivity tables need to be maintained. This makes
the code extremely flexible, enabling it to handle a wide variety of block topologies,
including 0 grids embedded in H grids, periodic boundary conditions, etc. For the above
strategy to be successful, the basic premise is that all blocks sharing a particular point
must have identical copies of its complete stencil. The user input specifies only the blocks
that share a face with the current block. This means that a block has no information about
its diagonally opposite neighbor. A communication strategy that allows each block to
acquire information from its diagonal neighbors is described in the next section.

Communication between Shared Faces

Each block is aware only of the neighboring blocks with shared faces. This means the
block cannot directly access the corner points from its diagonally opposite block. To
overcome this problem, the blocks communicate faces inclusive of the extra points
received from the neighboring blocks (shown by the dashed-blocks). However, this means
that the blocks that send the points before receiving the faces from the neighbors would
send out old points to the neighbors. One way to overcome this problem is to perform
communication in a cyclic loop. However, the resulting communication process would be
sequential and result in a large communication latency. The problem can be overcome by
simply performing the communication process twice. This strategy allows results in the

use of asynchronous communication, so that more than just two blocks communicate at
any instant. In case of the simple topology discussed in the earlier section, each block
would now communicate only 12 times. Note that doing the entire communication process
twice does involve transmission of some redundant information. This could be avoided by
sending only edge and vertex information in the second communication process. This
feature has yet to be implemented in PMAG.

Parallel Multiblock Interpolation

As the points are redistributed, the original solution needs to be interpolated onto the new
grid. A parallel grid adaptation algorithm supporting general multiblock topologies makes
solution interpolation significantly more complex. The grid points can move outside the
original domain of a block. In such a case, the block does not have enough information to
interpolate the solution and adaptive functions to all its points. Each block now needs to
query all other blocks for the points that are no longer within its domain. The search
algorithm starts with a search and interpolation of all points found within each block. Each
process creates a list of points that are not found within its domain. These lists are
concatenated into a global list which is broadcast to all processes for search. The processes
then locate and compute the interpolated solutions for the points found within their
domains. A final all-reduce over all processes makes the solutions known to all the
processes. This operation takes 4log P communications. A shift operation (the list of
external points are shifted in a circle through all processes) would take P communications
to complete. Hence a shift would be faster for domains where the number of blocks < 16.
Ideally a polyalgorithm should be used to switch methods according to the number of
processes. The shift has not yet been implemented in PMAG.

Figure 9 shows a chemically reacting, supersonic flow through a convergent channel. The
initial grid and the velocity distribution are shown in Figure 9(a). The adaptation is based
on the U, V components of velocity, pressure, temperature and Mach number. Since there
was insufficient grid clustering present in the near the shock region in the initial grid, the
adaptation was not effective in the vicinity of the shock (see Figure 9(b)). By introducing
the metric terms in the weight function, the shock is captured properly (Figure 9(c)) and
other solution features are evident in the resulting adapted grid.

(a) Initial Grid and Velocity Distribution

(b) Weight Function

(c) Adapted Grid With Interpolated velocity
Figure 9 Grid Adaptation for Chemically Reacting Flows

The multiblock grid adaptation capability based on the elliptic redistribution scheme is
included in the PMAG system. The ability of PMAG to generate grids appropriate for
computing complex, three-dimensional flow fields is demonstrated by simulating a
supersonic flow around a tangent-ogive cylinder at a Mach number of 1.45 and an angle of
attack of 14 degrees [36]. The initial grid and the solution are presented in Figure 11(a)-
(b). The weight functions evaluated using the formulation presented in eqns. (10) and (11)
is displayed in Figure 11(c). It can be seen that the solution features presented in Figure
11(b) are captured by the weight function. Figure 11(d) shows the adapted grid. The
adapted grid shows a concentration of grid points in the primary and secondary shock
regions as well as in the boundary layer regions. The concentration in the vortex core is
also pronounced

Figure 10 Unadapted and Adapted Grids for KTA2-15 Missile
Figure 12 shows two different longitudinal locations, one displaying the solution and the
weight function and the second displaying the solution and the adapted grid. The flow
features corresponding to the vortex and the feeding sheet are clearly visible in the weight
function as well as in the adapted grid. Axial and normal forces and moments were
computed from solutions obtained from the adapted and unadapted grids and are
compared with the experimental data in Table 1. The axial force determined from the
experimental data is misleading due to a discrepancy during testing[36]. However, the
normal force and moment for the adapted grid show better agreement with the
experimental data than the normal force and moment for the unadapted grid.

Table 1: Comparison of Forces and Moments
Forces Experimental Data Unadapted

NPARC (BL)
Adapted

NPARC (BL)
Axial 0.1957 0.3307 0.3309

Normal 1.91 1.8855 1.9052
Moment 10.2417 10.0314 10.2060

6 block missile
case: Parallel
performance

on SGI R4400
machine

Parallel Performance

INTERPOLATION AND SEARCH

The interpolation and search is based on [39]. The algorithm used takes advantage of the
local physical properties by mapping the global geometry in terms of local coordinates of
the current cell. The interpolation point xp is expressed in terms of these local coordinates
which fall within a known interval (between 0 and 1 in case of unstructured and between -

1 and 1 in case of structured) if xp lies within the cell. If any of the coordinates fall outside
the interval, the next cell is guessed based on the value of those local coordinates.

In the unstructured search, there are 4 local coordinates.

∑
=

=
4

1j
jjp XX λ

∑
=

=
4

1

1
i

iλ

The equations for these are solved directly by inverting using Cramer's rule. The next cell
is in the direction of the lowest valued local coordinate. If the next cell is a boundary, then
an alternate cell is decided by the direction of the next lowest valued local coordinate.
In the structured search, there are 3 local coordinates.

∑
=

=
8

1j
jjp XX λ

8/)1)(1)(1(1 γβαλ −−−= . 8/)1)(1)(1(2 γβαλ −−+=

8/)1)(1)(1(3 γβαλ −++= . 8/)1)(1)(1(4 γβαλ −+−=

8/)1)(1)(1(5 γβαλ +−−= . 8/)1)(1)(1(6 γβαλ ++−=

8/)1)(1)(1(7 γβαλ +++= . 8/)1)(1)(1(8 γβαλ +−+=

The equations to compute the local coordinates are solved using newton's method. This is
because solving using Cramer's rule may give a direct solution that can give a wrong
direction sense. In structured search, the next guess cell can be diagonal to the current cell
if more than one coordinates fall outside the interval. Further if any of the coordinate is
extremely large then the algorithm intelligently jumps more than one cell in the
appropriate direction. If we assume the nearby cells to have approximately similar aspect
ratio as the current cell, then an a=10 would mean that the point xp lies approximately 10
cells away.

SUMMARY

In this paper, we have described efforts by the CFD CTA to support DOD CFS users
through technology improvement projects in grid generation. Additional information can
be obtained by contacting Bharat Soni at (601) 325-2647 or bsoni@erc.msstate.edu.

REFERENCES

1 Huang, Chih-Ti., “Hybrid Grid Generation System,” Master's Thesis, Department of
Aerospace Engineering, Mississippi State University, MS, August 1996.

2 Weatherill, N. P., “Grid Generation by Delaunay Triangulation,” Lecture Series in von
Karman Institute for Fluid Dynamics 1993-94.

3 Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W., Numerical Grid Generation:
Foundations and Applications, North-Holland, Amsterdam. 1985.

4 Eiseman, P.R., "Alternating Direction Adaptive Grid Generation," AIAA Paper 83-1937,
1983.

5 Soni, B.K., "Structured Grid Generation in Computational Fluid Dynamics,"
Vichnevetsky, R., Knight, D., and Richter, G. (eds.), Advances in Computer Methods
for Partial Differential Equations VII, Rutgers University, pp 689-695, June 1992.

6 Buning, P.G. and Steger, J.L., "Graphics and Flow Visualization in Computational Fluid
Dynamics," AIAA Paper 85-1507-CP, Proceedings of the AIAA 7th Computational
Fluid Dynamics Conference, 1985.

7 NASA LeRC and USAF AEDC, "NPARC 1.0 User Notes," June 1993.
8 Ghia, K.N., Ghia, U., Shin, C.T. and Reddy, D.R., "Multigrid Simulation of Asymptotic

Curved-Duct Flows Using a Semi-Implicit Numerical Technique," Computers in Flow
Prediction and Fluid Dynamics Experiments, ASME Publication, New York 1981.

9 Soni, B.K. and Yang, J.C., "General Purpose Adaptive Grid Generation System," AIAA-
92-0664, 30th Aerospace Sciences Meeting, Reno, NV, Jan. 6-9, 1992.

10 Thornburg, H.J. and Soni, B.K., "Weight Functions inGrid Adaption," Proceedings of
the 4th International Conference in Numerical Grid Generation in Computational Fluid
Dynamics and Related Fields held at Swansea, Wales 6-8th April 1994.

11 Soni, B.K., Thompson, J.F., Stokes, M.L. and Shih, M.H., "GENIE++, EAGLEView
and TIGER: General and Special Purpose Interactive Grid Systems," AIAA-92-0071,
30th Aerospace Sciences Meeting, Reno, NV, Jan. 6-9, 1992.

12 NASA LaRC, "User Document for CFL3D/CFL3DE (Version 1.0)", 1993.
13 Thompson, J.F., "A Survey of Dynamically-Adaptive Grids in Numerical Solution of

Partial Differential Equations," Applied Numerical Mathematics, vol. 1, pp 3-27,
1985.

14 Anderson, D.A., "Adaptive Grid Methods for Partial Differential Equations,"
Advances in Grid Generation, ASME Publication, New York, pp. 1-15, 1983.

15 Soni, B.K. and Yang, J.C., "General Purpose Adaptive Grid Generation System,"
AIAA-92-0664, 30th Aerospace Sciences Meeting, Reno, NV, Jan. 6-9, 1992.

16 Soni, B.K., Weatherill, N.P. and Thompson, J.F., "Grid Adaptive Strategies in CFD,"
International Conference on Hydo Science and Engineering, Washington, D.C., June
7-11, 1993.

17 Dwyer, H.A., "Grid Adaption for Problems in Fluid Dynamics," AIAA Journal, vol.
22. No. 12, pp. 1705-1712, December 1984.

18 Thornburg, H.J. and Soni, B.K., "Weight Functions inGrid Adaption," Proceedings of
the 4th International Conference in Numerical Grid Generation in Computational Fluid
Dynamics and Related Fields held at Swansea, Wales 6-8th April 1994.

19 Niederdrenk, P., "Solution Adaptive Grid Generation by Hyperbolic/Parabolized
P.D.E.s," Numerical Grid Generation in Computational Fluid Dynamics and Related
Fields, Eds. A. S.-Arcilla, J. Hauser, P. R. Eiseman, and J. F. Thompson, Elsevier
Science Publishing Company, New York, 1991.

20 Niederdrenk, P., "Grid Adaption to Multiple Auto-Scaled Solution Features,"
Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, Eds.
N.P. Weatherill, P. R. Eiseman, J. Hauser, and J. F. Thompson, Pineridge Press Ltd.,
Swansea, U.K., 1994.

21 Nakamura, S., "Noniterative Grid Generation Using Parabolic Partial Differential
Equations", Numerical Grid Generation, Ed. J. F. Thompson, Elsevier Science
Publishing Company, Inc., New York, 1982.

22 Chan, W., "Enhancements of a Three-Dimensional Hyperbolic Grid Generation
Scheme," Applied Mathematics and Computation, 51, 181-205, (1992).

23 Noack, R. W., and Anderson, D. A., "Solution-Adaptive Grid Generation Using
Parabolic Partial Differential Equations", AIAA J., 28, 1016-1023 (1990).

24 Noack, R. W., and Parpia, I. H., "Solution Adaptive Parabolic Grid Generation in Two
and Three Dimensions", Numerical Grid Generation in Computational Fluid Dynamics
and Related Fields, Eds. A. S.-Arcilla, J. Hauser, P. R. Eiseman, and J. F. Thompson,
Elsevier Science Publishing Company, New York, 1991.

25 Thompson, J. F., Soni, B. K., and Weatherill, N. P., ``Handbook of Grid Generation",
CRC Press, 1999, pp. I-26.

26 Yang, J. C., ``General Purpose Adaptive Grid Generation System", Ph.D Dissertation,
Dept. of Computational Engineering, Mississippi State University, July 1993.

27 Tleimat, H., ``Computational Simulation of High-Energy Heavy-Ion Collisions", Ph.D
Dissertation, Dept. of Physics and Astronomy, December 1996.

28 HandBook of Grid Generation, Thompson, J. F., Soni, B. K., Weatherill, N. P., (Eds),
CRC Press, 1999.

29 Soni, B. K., Weatherill, N. P., ``Geometry-Grid Generation", Computer Science and
Engineering Hand Book, Allen B. Tucker (Ed), CRC Press, pp 791-819, 1997.

30 Weatherill N. P., ``Mixed Structured-Unstructured Meshes for Aerodynamic Flow
Simulation", The Aeronautical Journal, Vol. 94, pp 111-123, No. 934, 1990.

31 Yu, Tzu-Yi., ``CAGI: Computer Aided Grid Interface", Ph.D Dissertation, Dept. of
Computational Engineering, Mississippi State University, 1996.

32 Snir, M., Otto, S. W., Huss-Ledermann, Walker, S., and Dongarra, J., ``MPI: The
Complete Reference", MIT Press, 1996.

33 Gropp, W., Lusk, E., and Skjellum, A., ``Using MPI: Portable Parallel Programming
with the Message-Passing Interface", MIT Press, 1994.

34 Apte, M. S., ``Parallel Adaptive Grid Generation for Structured Multiblock Domain",
Master's Theses, Dept. of Computational Engineering, Mississippi State University,
1997.

35 McRae, S. D., and Laflin, K. R., ``Dynamic Grid Adaptation and Grid Quality",
HandBook of Grid Generation, Thompson, J. F., Soni, B. K., Weatherill, N. P., (Eds),
CRC Press, 1999.

36 Khairullina, O. B., Sidorov, A. F., and Ushakova, O. V., ``Variational Methods of
Construction of Optimal Grids", HandBook of Grid Generation, Thompson, J. F., Soni,
B. K., Weatherill, N. P., (Eds), CRC Press, 1999.

37 Brackbill, J. S., ``Application and Generalization of Variational Methods for
Generating Adaptive Meshes", Numerical Grid Generation, Edited by J. F. Thompson,
Elsevier Sciences Publishing Company, 1985.

38 Walter, B. S., Trevor, B., Lauzon, Marc, Housh, C., Manter, J., Josyula, E., and Soni,
B. K., ``The Application of CFD to the Prediction of Missile Body Vortices", AIAA
97-0637, 35th Aerospace Sciences Meeting & Exhibit, Jan. 6-10, 1997, Reno, NV.

39 Stokes, M. L. and Kneile, K. R., "A Three Dimensional Search/InterpolationScheme
for CFD Analysis", Presented at the first World Congress on Computational
Mechanics, University of Texas at Austin, September 1986.

40 Melton, J.E., Berger, M.J., Aftosmis, M.A., and Wong, M.J., “3D Applications of a
Cartesian Grid Euler Method,” AIAA 95-0853, January 1995.

41 M.J. Berger, “Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations,” Journal of Computational Physics, 53: 484-512, 1984.

42 Gordon, W.J. and Thiel, L.C., “Transfinite Mappings and Their Application to Grid
Generation,” Numerical Grid Generation, Thompson, J.F. (ed.), North Holland,
Amsterdam, 1982.

43 Soni, B.K., “Grid Generation for Internal Flow Configurations,” Computer &
Mathematics with Applications, Vol. 24, No. 5/6, pp. 191-201, September 1992.

44 Thompson, J.F., “A General Three-Dimensional Elliptic Grid Generation System on a
Composite Block Structure,” Computer Methods in Applied Mechanics and
Engineering, 64, 377-411, North Holland, 1987.

45 Steger, J.L. and Chausee, D.S., “Generation of Body-Fitted Coordinates using
Hyperbolic Pratila Differential Equations,” SIAM Journal of Scientific Computation,
p. 431, 1980.

46 Brackbill, J.U., “An Adaptive Grid with Directional Control,” Journal of
Computational Physics, Vol. 108, p. 38, September 1993.

47 Voronoi, G., “Nouvelles Applications des Parametres Continus a La Theorie Des
Formes Quadratiques, Rescherches sur les Parallelloedres Primitifs,” J. Reine Angew.
Math., Vol. 134, 1908.

48 Lohner, R. and Parikh, P., “Three-Dimensional Grid Generation by the Advancing-
Front Method,” International Journal of Numerical Methods of Fluids, 8, 1135-1149,
1988.

49 Marcum, D.L., “Generation of Unstructured Grids for Viscous Flow Applications,”
AIAA 95-0212, 33rd Aerospace Sciences Meeting and Exhibit, January 9-12, 1995,
Reno, NV.

50 Koomullil, R. P., Soni, B.K., and Chih-Ti, H., “Navier-Stokes Simulation on Hybrid
Grids,” AIAA 96-767, also presented at the 34th Aerospace Sciences Meeting, January
15-18, 1996, Reno, NV.

51 Thompson, J.F., “A Reflection on Grid Generation in the 90's: Trends, Needs, and
Influences,” International Numerical Grid Generation in Computational Field

Simulations, B.K. Soni, J.F. Thompson, J. Hauser and P.R. Eiseman (Eds.), P. 1029,
Proceedings of the 5th International Grid Generation Conference, ERC Press, 1996.

52 Soni, B.K., Weatherill, N.P., “Geometry-Grid Generation,” Computer Science and
Engineering Handbook, CRC Press, pp.791-816, 1996.

53 Thompson, J.F., Soni, B.K., Weatherill, N.P., (Eds.), CRC Handbook of Grid
Generation, CRC Press, 1998.

54 Sahu, J., Heavey, K., and Nietubicz, C. “Computational Modeling of Sense And
Destroy Armor (SADARM) Submunition Separation/Collision,'' ARL-TR-1378, June
1997.

55 Sahu, J., Dinavahi, S., Heavey, K., and Nietubicz, C., “Application of Chimera Grid
Technique to Projectile Configurations,'' presented at 6th International Conference on
Numerical Grid Generation in Computational Field Simulation, July 98, University of
Greenwich, London, England.

56 C. H. Berdahl and D. S. Thompson, “Eduction of Swirling Structure Using the
Velocity Gradient Tensor," AIAA J., Vol. 31, No. 1, 1993, pp. 97-103, (also AIAA
Paper 91-1823, presented at the AIAA 22nd Fluid Dynamics, Plasma Dynamics and
Lasers Conference, Honolulu, HI, 1991)

